
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics
Volume 1: Long Papers, pages 2062–2078

July 9-14, 2023 ©2023 Association for Computational Linguistics

BIG-C: a Multimodal Multi-Purpose Dataset for Bemba

Claytone Sikasote1, Eunice Mukonde2, Md Mahfuz Ibn Alam3, Antonios Anastasopoulos3
1Department of Computer Science, University of Zambia, Zambia

2Department of Literature and Languages, University of Zambia, Zambia
3Department of Computer Science, George Mason University, USA

claytone.sikasote@cs.unza.zm, antonis@gmu.edu

Abstract

We present BIG-C (Bemba Image Grounded
Conversations), a large multimodal dataset for
Bemba. While Bemba is the most populous
language of Zambia, it exhibits a dearth of
resources which render the development of
language technologies or language process-
ing research almost impossible. The dataset
is comprised of multi-turn dialogues between
Bemba speakers based on images, transcribed
and translated into English. There are more
than 92,000 utterances/sentences, amounting
to more than 180 hours of audio data with cor-
responding transcriptions and English transla-
tions. We also provide baselines on speech
recognition (ASR), machine translation (MT)
and speech translation (ST) tasks, and sketch
out other potential future multimodal uses of
our dataset. We hope that by making the dataset
available to the research community,1 this work
will foster research and encourage collabora-
tion across the language, speech, and vision
communities especially for languages outside
the "traditionally" used high-resourced ones.

1 Introduction

The Bemba language, spoken by over 10 million
people in Zambia and other parts of Africa, is a
rich and vibrant language with a unique cultural
heritage. However, despite its significance, Bemba
is a dramatically under-resourced language, lacking
in high-quality language data and resources for
natural language processing (NLP) experiments
and for the development of language technologies.
With this work, we address this issue by creating
a new multimodal dataset for Bemba. Our goal
is to improve the accuracy and effectiveness of
NLP systems for speakers of Bemba and support
research in this under-served language.

While most datasets are constructed with a spe-
cific task in mind and tailored to its characteris-

1All data and code are publicly available: https://
github.com/csikasote/bigc.

Umwana alepeluka pa cimpelwa elo
ba nyina pa mbali balemutamba
A child is on a swing chair swinging
while the mother watches on the side

Akamwana kali akasansamuka
saana,kalelosha ba nyina nakasekelela.
The child is very excited for swinging,

looking at its mother with a smile.Cipalile pali efyo balekeba ba nyina
pantu bonse bali abasekelea
It seems like she is telling the child
something as they both have smiled.

Limbi kaleumfwafye bwino filyafine
kalepeluka nabanyina balekasunka.

It may be excited for swinging even as
the mother swings it.

Awe cine abana balatemwa banyina,
insansa muli uyu umwana shafulisha
Indeed children love their mothers, the
child is just too excited.

Figure 1: Example of the data included in BIG-C. The
grounding image (top) and the ensuing Bemba dialogue
transcribed and translated in English.

tics, we aim to provide a path towards building
multi-purpose datasets. Under a limited budget,
we hypothesize that the ideal scenario is to create
datasets that can be useful for developing multiple
language technologies for both practical applica-
tions and also facilitate cutting-edge NLP research
on many dimensions. Our hope is that such datasets
will aid in bridging the ever-widening language di-
vide both in terms of data availability (Joshi et al.,
2020) and NLP research (Blasi et al., 2022), and
make language technologies more accessible for
speakers of Bemba.

In this work, we present our methodology and
results of creating a new multimodal dataset for Be-
mba, and demonstrate the potential of this dataset
to develop NLP systems and support NLP research.
Our dataset will fill multiple roles: enable devel-
opment of fundamental tools such as speech recog-
nition, speech and text translation systems for Be-
mba; serve as a benchmark for academic and in-
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Images Text Audio
Dataset (#unique) (turns) (hours) Languages(s) Parallel

Task: Image Captioning
MSCOCO (Lin et al., 2015) 330K 1.5M - Eng NA
Flickr8K Audio (Harwath and Glass, 2016) 8K 40K 65 Eng NA
Flickr30K (Plummer et al., 2015) 30K 158K - Eng NA
Pascal Sentences (Funaki and Nakayama, 2015) 1K 10K - Eng, Jap Partial
IAPR TC-12 (Grubinger et al., 2006) 1K 10K - Eng, Deu, Spa No
Multi30K (Elliott et al., 2016, 2017; Barrault et al.,
2018)

30K 155K - Eng, Deu, Fra,
Ces

Yes

WIT (Srinivasan et al., 2021) 11.5M 37.6M - 108 langs Partial
HaVG (Abdulmumin et al., 2022) 30K 30K - Eng, Hau Yes
BAN-Cap (Khan et al., 2022) 8K 40K - Eng, Ben Yes
Bloom Library (Leong et al., 2022) 90K 110K 428 363 langs NA

Task: Dialogues over Images
IGC (Mostafazadeh et al., 2017) 4.2K 25K - Eng NA
Image-Chat (Shuster et al., 2020) 202K 202k – Eng NA

BIG-C 16K 90K 185 Bem, Eng Yes

Table 1: BIG-C and related datasets. BIG-C is the only multi-purpose dataset in an under-served language.

dustry research even as NLP for low-resource and
under-represented African languages gets devel-
oped; facilitate research in language grounding
and multimodal model development, or building
context-based dialogue agents, among other possi-
ble use cases. To our knowledge this is the first such
dataset of its kind for any Zambian and possibly
African language. We hope that it will provide an
example of how to create a multi-purpose dataset in
an under-served language to facilitate its coverage
by multiple technologies.

The rest of the paper is structured as follows:
in Section 2, we briefly introduce the Bemba lan-
guage discussing any currently available resources.
In Section 3, we summarise work related to multi-
modal tasks and existing datasets. In Section 4, we
provide a description of the BIG-C dataset and the
methodology used, and in Section 5, we provide
baseline experiments for some NLP tasks.

2 The Bemba Language

Bemba, also known as IciBemba or Cibemba, is a
Bantu language native to Luapula, Muchinga and
Northern provinces of Zambia. It is also spoken
in other urban parts of the country like Copperbelt,
Central and Lusaka provinces. It is estimated that
Bemba is spoken by over 30% of the population
of Zambia as either the first or second language,
making it the language with the most speakers in
the country (Kapambwe, 2018). A map of Bemba
usage in Zambia is provided in Appendix Figure 3.

The Bemba language has a number of dialects
and the main varieties are: Standard Bemba also
Central Bemba, Aushi, Bisa, Chishinga, Lamba,

Lala, Luunda, Ngumbo, Swaka, Tabwa and Unga.
These dialects show minor differences in phonol-
ogy, morphology and vocabulary(Spitulnik and
Kashoki, 2001; Spitulnik and Kashoki., 2014). In
this work, we focus on the Standard Bemba dialect,
i.e., the one spoken in urban centers around the
country.

Datasets for Bemba For ASR, to the best of
our knowledge, there is only a single dataset pub-
licly available for Bemba, BembaSpeech (Sika-
sote and Anastasopoulos, 2022). It contains 24
hours of read-styled speech data recorded from text
mainly sourced from various source but mainly
literature books. The low resource nature of the Be-
mbaSpeech (Sikasote and Anastasopoulos, 2022)
dataset makes it difficult to build usable ASR sys-
tem for Bemba. For machine translation (text-
to-text), there is not a single dedicated dataset
for Bemba. However, there exist some parallel
text-to-text data in multilingual datasets such as
JW300 (Željko Agic and Vulic, 2020) and in eval-
uation benchmarks such as NTREX-128 (Feder-
mann et al., 2022) and FLORES-200 (NLLB Team
et al., 2022). The text in the JW300 (Željko Agic
and Vulic, 2020) is mostly religious as it is derived
from the Bible text. For speech translation (speech-
to-text; ST), to our knowledge, no prior work or
Bemba dataset exists. This essentially renders it
impossible to build a ST system where Bemba is
a source or target language. The same is true for
multimodal and dialogue datasets: there is no multi-
modal or dialogue-related dataset for any Zambian
language that would enable development of multi-
modal systems. Our work aims to fill these gaps.
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3 Related Work

In the recent years, NLP, speech processing (SP)
and computer vision (CV) fields have rapidly
advanced, with computational models’ perfor-
mance achieving new heights on a wide range
of downstream tasks. This, to some degree, can
be attributed to factors such as the emergence
of pre-trained models leveraging self-supervised
learning, the availability of large-scale datasets,
and increased large-scale computational infrastruc-
ture (Hirschberg and Manning, 2015). In NLP,
language models like BERT (Devlin et al., 2019),
T5 (Raffel et al., 2020), GPT3 (Brown et al.,
2020) and XLM-R (Conneau et al., 2020), pre-
trained on massive text datasets such as C4 (Raf-
fel et al., 2020), mC4 (Xue et al., 2021) and
BooksCorpus (Zhu et al., 2015) among others,
have lead to significant performance improvements
on several language understanding and generation
downstream tasks. Likewise, for speech process-
ing, the unsupervised pretraining of models like
wav2vec2.0 (Baevski et al., 2020) or XLS-R (Babu
et al., 2021) – having been pretrained on publicly
available speech datasets such as VoxPopuli (Wang
et al., 2021), MLS (Pratap et al., 2020), Common-
voice (Ardila et al., 2020), BABEL (Punnakkal
et al., 2021) among others, have led to advances on
speech downstream tasks like ASR (Babu et al.,
2021) and ST. In computer vision, deep learn-
ing models like DeepCNN (Simonyan and Zisser-
man, 2015; He et al., 2016) have become the de
facto solution for standard vision problems like
object recognition (He et al., 2016), image clas-
sification (Krizhevsky et al., 2017), or semantic
segmentation (Shelhamer et al., 2017).

Since these neural models are conceptually (and
architecturally) quite similar they have also enabled
the integration of multiple modalities, with models
such as ViLBERT (Lu et al., 2019), UNITER (Chen
et al., 2020), Unicoder-VL (Huang et al., 2019)
able to jointly model the relationship between
text and image modalities resulting into break-
throughs across a myriad of tasks such as image-
text retrieval/search (Frome et al., 2013; Huang
et al., 2020), image or video captioning (Biten
et al., 2019), and vision-question answering (VQA;
Agrawal et al., 2017; Nam et al., 2017). A crucial
necessary component for all of the above, of course,
is the availability of relevant datasets. Below we
discuss works that go beyond the collection of raw
datasets that are used for self-supervised learning.

Dialogue In the recent past, a lot of work has
been focused on dialogue datasets. On one hand
there exist goal-oriented dialogue datasets, such
as the case of the Ubuntu dialogue corpus (Lowe
et al., 2015), the largest corpus of dialogues (al-
most 1 million mainly 3-turn dialogues in En-
glish) for the specific topic of troubleshooting
Ubuntu problems. On the other hand, open
ended conversations, such as those on the CALL-
HOME/CALLFRIEND (Canavan et al., 1997) or
Fisher corpora (Cieri et al., 2004), often leads to un-
interesting conversations. Grounding the dialogue
to event-centric images and potentially a specific
scenario constrains the topic of conversation to
event-rich and contentful utterances.

Multimodality Multimodal works combining vi-
sual and language information typically focus
on image captioning and visual question answer-
ing (Antol et al., 2015). For example, the IAPR
TC-12 dataset (Grubinger et al., 2006) provides
images with titles and descriptions (mostly in En-
glish, German, and Spanish), as do commonly
used datasets like MSCOCO (Lin et al., 2015) and
Flickr30K (Plummer et al., 2015). Flickr8K Au-
dio (Harwath and Glass, 2016) extended a sub-
set of the Flickr images with audio, by crowd-
sourcing readings of the English captions, while
Multi30K (Elliott et al., 2016) further extended
Flickr30K with German translations and anno-
tations. Wikipedia-based Image Text (WIT)
Dataset (Srinivasan et al., 2021) provided large
multilingual coverage (108 languages) based on
11.5M images and captions from Wikipedia. More
recent, Hausa Visual Genome (HaVG; Abdulmu-
min et al., 2022) provided over 30K parallel de-
scriptions in English and Hausa of images from the
Hindi Visual Genome (HVG; Parida et al., 2019).
The dataset was created by automatically translat-
ing the English descriptions of the images in the
HVG to Hausa using Google Translate2 and post-
edited by crowd-sourced Hausa volunteers. Simi-
larly, BAN-Cap (Khan et al., 2022) provides over
40K human-annotated parallel English-Bangla im-
age description pairs based on 8,091 images from
Flickr8K (Harwath and Glass, 2016). Lastly, the
Bloom Library (Leong et al., 2022) provides a set
of multilingual datasets for language modeling, im-
age captioning and visual-story telling tasks con-
taining more than 110K image captions for over
90K images in 351 languages. It also provides a

2https://translate.google.com/
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speech dataset with 428 hours of speech data for
speech synthesis/recognition tasks covering 56 lan-
guages.

Beyond captioning tasks, the dialog component
was first explored by Das et al. (2017), who ex-
tended the VQA scenario collecting sequential
questions grounded on images. Mostafazadeh
et al. (2017) went beyond goal-oriented dialogue to
collect image-grounded conversations (contrasting
this to open-ended dialogue research). More re-
cently, the Image-Chat dataset (Shuster et al., 2020)
collected open-ended conversations grounded in
images with a focus on engagement, by assigning
desired style traits to the speaker.

Discussion There are notable limitations with
most publicly available multimodal datasets. To
make comparisons easy, we outline most relevant
works in Table 1. While the list shown there is
non-exhaustive, these limitations can be grouped
in terms of language coverage, modality composi-
tion, tasks supported i.e., single-purpose or multi-
purpose tasks. To give more context to this catego-
rization:

• In terms of languages, they cover only a hand-
ful of high-resourced languages like English.

• In terms of modality composition, the major-
ity only contain image and text modalities,
ignoring the audio component.

• With regards to tasks, the majority are meant
for a single-purpose task such as image cap-
tioning.3

In contrast, our work presents a multimodal but
also multi-purpose dataset for Bemba. Our aim
is for BIG-C to be the first-of-its-kind dataset for
an under-served language that can simultaneously
serve as:

• a monolingual dataset for Bemba e.g., to be
used for training language models on this
under-served language;

• a parallel dataset to allow for building and
evaluating machine translation solutions;

• an image captioning dataset with image de-
scriptions in Bemba;

• an image-grounded dialogue dataset;
• a benchmark for any combination between

the above modalities e.g., one could use our
dataset to evaluate image-grounded dialogue
translation systems.

3An exception to this is the Bloom Library (Leong et al.,
2022). But note that it lacks representation of any Zambian
language among the covered languages.

Description Count

Data
# unique images 16,229
# hours transcribed and translated 187
# complete dialogues 16,697
# "incomplete" dialogues 2,314
# sentences/complete dialogue 5
# spoken utterances 92,117
# English translations 92,117
# Bemba tokens 870K
# English tokens 1.1M

Metadata
# speakers 86
# transcribers 93
# translators 114
# validators 15

Table 2: BIG-C: Basic Dataset Statistics.

We achieve this through careful instructions and
data collection practices, outlined in Section §4.

4 Dataset Description

Description The dataset consists of a parallel cor-
pus of speech and transcriptions of image-grounded
dialogues between Bemba speakers and their corre-
sponding English translations. It contains 92,117
spoken utterances (complete and incomplete dia-
logues), amounting to 187 hours of speech data
grounded on 16,229 unique images. There are
16,697 complete 5-turn unique dialogues grounded
on 14,551 unique images. Of the total 16,697
complete dialogues, 2,146 are unique dialogues
grounded on duplicated images, each recorded by
unique pairs of speakers. A second set of dialogues
is comprised of 2,314 incomplete dialogues miss-
ing one or more utterances as a result of the pre-
processing step that involved removing all audio
files that are silent and corrupted. The sum of ut-
terances that make up the incomplete dialogues
is 8,632 of the total 92,117 utterances. All audio
files are encoded in Waveform Audio File format
(WAVE) with a single track (mono) and sample
rate of 16kHz. In Table 2, we provide basic dataset
statistics.

Source of images We randomly selected images
from the Flickr30K (Plummer et al., 2015) dataset,
a publicly available multimodal dataset for vision
and language that has become a standard bench-
mark for sentence-based image descriptions.
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Speakers To record conversations, we recruited
86 speakers of the Bemba language; 60% male
and 40% female, based on their competency to
speak, read and write the language. Based on the
metadata information supplied by participants, we
summarise the characteristics of our speakers as
follows:
• Age: the majority of the speakers (98%) were

youth whose age falls between 20 and 35 years
old with the 2% being over 35 years old.

• Education: all speakers had some form of sec-
ondary education; 90% of the participant were
either pursuing or recently graduated with a col-
lege/university degree; and the rest 8% had only
completed high school.

• Language(s): all speakers were bilingual; with
90% indicating Bemba as their first language
and Nyanja as the majority non-English second
language.

• Regions: in terms of regional representa-
tions, over 90% of the speakers were drawn
from Lusaka, Central, and Copperbelt regions;
with small representations from Muchinga and
Northen provinces. This in effect indicates that
the dataset is composed of the current ’urban’
Bemba variety.

• Racial diversity: the composition of our partic-
ipants lacks racial diversity, as all speakers are
identified as black.

Recording The speakers were randomly paired
with gender-balancing in mind. Each pair was allo-
cated 250 images to create 5 sentence-turn conver-
sation per image for each recording session. There
was no restriction to what each pair would converse
about on an image. The participants were encour-
aged to be creative. However, the conversation
starter (speaker 1) was instructed to first describe
the image, so as to give context to the conversation
(and essentially provide data for the image caption-
ing component of our dataset). We provide the sam-
ple instructions that were given to the annotators in
Appendix A. All recordings were conducted in min-
imally controlled conditions. The pairs recorded
as per their comfort, we therefore expect that some
spoken utterances have background noise. All par-
ticipants used the LIG-AIKUMA (Gauthier et al.,
2016) mobile application, using the ‘elicitation by
image’ mode to record spoken utterances.

Transcribers To transcribe the audio data gener-
ated from the image-grounded conversations, we re-

cruited 93 participants, who in their majority were
students of the University of Zambia. All were
competent Bemba speakers and writers. As shown
in Table 2, 92,117 spoken utterances were tran-
scribed representing 187 hours of Bemba speech
data.

Translators To translate a subset of the transcrip-
tions to English, we recruited 115 participants with
experience in translating Bemba text to English
or vice versa. Public education in Zambia is con-
ducted in English, hence we are confident in a min-
imum translation quality.

Splitting We have split the dataset into train-
ing, validation and testing sets following the origi-
nal splits in the Flickr30K (Plummer et al., 2015)
dataset according to the images. See Table 3 for
more details.

Data quality Several measures were set up dur-
ing the data collection process to ensure quality
submissions from project participants; speakers,
transcribers and translators. First, at recruitment
stage for audio recording, we considered only com-
petent Bemba speakers with ability to speak, read
and write in Bemba. All the speakers underwent a
training exercise to make sure they understood and
followed instructions of how to go about the task
of creating and recording multi-turn conversations
using the Lig-Aikuma (Gauthier et al., 2016) mo-
bile application. For the transcriptions, we retained
good number of the speakers - over 50% to also
participate in transcribing the audio files at tran-
scribing stage. In addition, we recruited validators,
who together with the authors of this study checked
and verified manually every submission made by
the participants at every stage of the process. All au-
dio files that were deemed to be of low quality i.e.,
silent, corrupted and inaudible due to background
noise, were removed as part of data pre-processing
at the quality assurance and validation stage.

Last, during the translation stage, besides the
ability to speak, read and write, we recruited par-
ticipant who had experience with translating Be-
mba text to English as translators. Most of the
participants had prior experience as professional or
volunteer translators.

Availability The dataset is made available to the
research community licensed under the Creative
Commons BY-NC-ND 4.0 license and can be ac-
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No. of speaker voices

Split Images utterances hours Male Female Unspecified

Train 14,599 82,375 167 43,959 38,338 78
Valid 492 2,782 5 1,491 1,289 2
Test 501 2,779 5 1,457 1,318 4
Held 637 4,181 8 2,105 2,072 4

Total 16,229 92,117 185 49,012 43,017 88

Table 3: Summary details of the splits of the dataset.

cessed at our Github repository.4 We do plan to
keep a small held-out portion unpublished, to be
used in future shared tasks or as part of leader-
boards that require hidden test sets to ensure a fair
measure of task progress.

5 Baseline Experiments

In this section, we detail some baseline experi-
ments carried out to demonstrate the potential of
the dataset. We provide unimodal baselines us-
ing the train-validation-test splits in Table 3 on the
following tasks: ASR for Bemba, MT and ST of
Bemba utterances to English text.

Data preprocessing For ASR and ST, similar
to Wang et al. (2020a), all text i.e., transcriptions
and translations, we lower the cases and remove
punctuation except for apostrophes, and build 1K
unigram character vocabularies with 100% cover-
age of all the characters using SentencePiece (Kudo
and Richardson, 2018) without pre-tokenization.
We extract 80-dimensional log-mel scale filterbank
features from Bemba utterances using a 25ms win-
dow size and 10ms window shift using torchaudio.5

The features are normalized to 0 mean and 1.0 stan-
dard deviation. All models are trained without an
auxillary language model.

Model Architecture We use the small Trans-
former (Vaswani et al., 2017) base architecture with
71 M parameters, s2t_transformer_s, having 12-
layers encoder, 6-layers decoder, and hidden dimen-
sion D=256 to train end-to-end (E2E) ASR and ST
models using FAIRSEQ S2T Toolkit (Ott et al.,
2019; Wang et al., 2020b). Models are trained on a
single NVIDIA Tesla P100 GPU using the Google
Colab+ platform.

4https://github.com/csikasote/bigc
5https://github.com/pytorchaudio

5.1 Automatic Speech Recognition

For the ASR baseline model for Bemba, we trained
the model for 500 epochs using the Adam opti-
miser (Kingma and Ba, 2015) with 10K warm up
steps. The model is optimised to minimise the
label_smooth_cross_entropy criterion function
using the learning rate coefficient of 2e-3. For de-
coding, we use the beam search algorithm with a
beam size of 5. We use the average of the last 5
checkpoints for evaluation. In Table 4, we report
the model performance on the Test set using word
error rate (WER) metric.

5.2 Speech Translation

For speech to text translation of Bemba spoken
utterances to English text, we use the same model
architecture as ASR. The model is trained with
same configuration as the ASR model except we
use the learning rate coefficient of 3e-4. Similarly,
we use the beam search algorithm with beam size
of 5 for decoding. We use the best checkpoint to
evaluate the model on the test set. We report the
detokenised case-sensitive BLEU (Papineni et al.,
2002) using sacreBLEU (Post, 2018) in Table 4.

Evaluation We use beam search with a beam
size of 5 for decoding. We use the average of the
last 5 checkpoints to evaluate both ASR and the
best checkpoint saved for ST model. We report the
results in Table 4. For ST, we report detokenised
case-sensitive BLEU (Papineni et al., 2002) using
sacreBLEU (Post, 2018) and word error rate (WER)
for ASR.

Results discussion For both ASR and ST, we
consider the results obtained decent for the size of
our dataset and the basic training configurations of
our baseline models, which are without auxillary
models, and mostly relied on default settings in
the FAIRSEQ S2T implementation. We believe
the results can be improved upon, and we leave
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Task Metric: Value

Speech Recognition WER (↓): 32.7

Speech Translation BLEU (↑): 17.9

Table 4: Baseline results (test set) on speech-based tasks.
For ST, we report detokenised case-sensitive BLEU (Pa-
pineni et al., 2002) using sacreBLEU (Post, 2018) and
word error rate (WER) for ASR.

the full exploration of the best configurations to
future work. We encourage the community to im-
prove upon these baselines, for instance, by ex-
ploring cross-lingual transfer learning by leverag-
ing large scale multilingual pretrained models like
XLS-R (Babu et al., 2021) and Whisper (Radford
et al., 2022).

5.3 Machine (Text) Translation

For Machine Translation we rely on the results
of the WMT Shared Task on Large Scale Ma-
chine Translation Evaluation for African Lan-
guages (Adelani et al., 2022). In particular, we
use the same system and approach as Alam and
Anastasopoulos (2022), which ranked third in the
Shared Task.6 These models are based on the
DeltaLM (Ma et al., 2021) pre-trained model,
which is the adapted through fine-tuning on 24
African languages (note that Bemba is not in-
cluded), as well as English and French. The adap-
tation happens using adapter units (Pfeiffer et al.,
2020) organized in a hierarchy following language
typology (Faisal and Anastasopoulos, 2022) so that
similar languages share similar "family" adapters.
We also compare against a baseline that finetunes
the whole DeltaLM model on our training set.

Here, we only use our training data to fine-tune
the adapter units for Bemba, and evaluate on both
our test set as well as on the publicly available
FLORES-200 devtest (NLLB Team et al., 2022).
The results are presented in Table 5, where we
report sentencepiece-BLEU (NLLB Team et al.,
2022) with the FLORES-200 tokenizer. In general,
translating into English seems to perform well, es-
pecially for the phylogeny-based model.

The difference between the performance in the
two test sets can be explained by the difference of
domains. All BIG-C training data are from dia-

6We note that this is the best-performing system that is
publicly available – to our knowledge, the first two performing
systems were industry submissions without publicly released
models or code.

logues, while the FLORES-200 evaluation dataset
is comprised of translated Wikipedia articles. Of
course, larger and more diverse data collection in
the future should help mitigate these issues and al-
low us to build general translation systems capable
of handling various domains adequately.

5.4 Other Tasks

The authors of this study unfortunately lack the fi-
nancial and compute resources, as well as required
expertise, to provide baseline results for additional
multimodal tasks. Nevertheless, we devote this
subsection to outlining some other potential down-
stream uses of BIG-C.
• Image Captioning The dataset could be used

directly for image captioning in Bemba (or En-
glish), by pairing the images with the first ut-
terance of the conversation, which will largely
function as a caption by design.

• Multimodal Language Modeling Similarly,
the corpus could be used for language and vi-
sion pre-training, and particularly to study mul-
tilingual approaches (in a field that has largely
focused solely on English).

• Multimodal Dialogue Modeling Similar to
other image-grounded tasks (see §3), one could
use to BIG-C to study dialogue, with a focus on
open-ended but still grounded conversation. One
could also use our dialogues as (pre-)training
data for chatbots in Bemba, which could then
potentially be adapted to handle specific goals or
domains with fewer in-domain data.

• Multimodal Translation In the experiments
above we did not take advantage of the image
when translating. One could explore whether
multimodal machine translation approaches (Bar-
rault et al., 2018, ; inter alia) could im-
prove downstream performance in these resource-
scarce settings.

• Cross-Cultural NLP A major limitation of our
dataset (also discussed in the relevant Limitations
section) is that most of the images that we use
are not particularly relevant to the Zambian or
sub-Saharan African context. We plan to mitigate
this issue by collecting an addendum to BIG-C
with images crowd-sourced in Zambia.
Nevertheless, this limitation is simultaneously an
opportunity to study cross-cultural understand-
ing as well as the priors/assumptions/biases that
speakers with a certain background exhibit. To
highlight this potential, we show some additional
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BIG-C FLORES-200
Model eng→bem bem→eng eng→bem bem→eng

DeltaLM FT 17.9 27.5 3.5 4.3
Phylogeny FT 16.5 28.9 6.0 18.0

Table 5: Baseline text translation results. The phylogeny-based model benefits from parameter sharing across all the
other Bantu languages.

interesting examples from BIG-C in Figure 2. In
the top-left example, the first speaker’s utterances
reveal several assumptions: that the musicians
are “Indian" (likely correct, since this image is lo-
cated in India); that they “are on a roof" (correct);
that they “sing religious songs" (unsupported);
or that “it’s time to congregate and pray" (unsup-
ported). In the example in the top-right, the first
speakers assumes the image is “by the riverside",
and not e.g., by the seaside or lakeside.7

6 Conclusion

In this paper, we presented a multimodal corpus
comprised of multi-turn dialogues between speak-
ers of the Zambian language, Bemba, grounded
on images, transcribed and translated into English.
It contains over 92,000 utterances/sentences, 180
hours of speech grounded over 16,000 images. The
dataset aims to fill multiple roles: enable develop-
ment of fundamental tools like speech recognition,
machine translation and speech-to-text translation
systems between Bemba and English; serve as a
benchmark for academic and industry research; and
to facilitate research in language grounding and
multimodal model development towards building
context-based dialogue agents, among other poten-
tial use cases. We have also provided baseline for
ASR, MT and ST task.

In future work, we plan to conduct multimodal
baseline experiments, as well as attempt to miti-
gate the image diversity limitation by collecting an
addendum to BiG-C using images taken locally in
Zambia. In addition, we plan to further expand to
other Zambian languages such as Tonga, Tumbuka,
Chewa, or Lozi, by translating the existing dataset
(creating an n-way parallel corpus for Zambian lan-
guages) and by direct data collection. Further down
the roan we plan to study the dialectal varieties
of Bemba and the other languages, by collecting
contrastive datasets from different regions of the
country.

7Note that Zambia is a land-locked country.

Limitations

We observe the following limitations with the
dataset:

• Language Diversity: In terms of number of
languages, the presented dataset only covers
two languages; Bemba and English.

• Image Diversity All the images used in this
dataset were obtained from Flickr30K image
dataset. Therefore, in terms image composi-
tion, our dataset is limited to the image diver-
sity in the Flickr30K dataset. It mostly lacks
images that could be considered as "culturally
relevant" ones for the Zambian or generally
sub-Saharan African context. We plan to miti-
gate this in future work.
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Bakemba babili bamwenye bali pa
mutenge mupepi ne cishiba. Balelisha
banjo, ingoma na masese
Two Indian musicians are on a roof
top near a water body. They are
playing a banjo, some drums and
some beads that rattle.

Aba bakemba babili ba mwenye
nibashitata abafwele ifyakufwala ifya

buta napantu bekele balelisisha nipa
nsalu yabuta.

These two Indian musicians are
elderly men wearing white clothes and

are seated on a white clothNalimo ukwimba kwabo kwa kupepa.
icimbo ca mapepo ntile
They seem to be singing religious
songs. I am sure they are singing
religious songs!

Emukwai. Ukwimba kwabo
kulemoneka nakalimo tekwimbafye
iyo, kwati nintambi. Emo basangila

umutende nobutusho ngabaleimba
kumipashi yabo.

That’s right. Their singing doesn’t
seem to be more singing, it seems

more like a religious practice. I am
sure they find peace and rest as they

sing to their gods

kwena pantu bali nipa muulu wa
cikulwa nalimo beleishibisha abanabo
ukutl ni nshita yakulongana kukupepa.
Surely, their being on top of that
building seems to be a signal to the
rest of their community that it’s time
to congregate and pray

Ba nyina , ba wishi nomwana
baleenda mumbali ya cimana
nabatangisha nomwana.
The father, wife and child walking in
front of them by the riverside.

Icimana cilemoneka icikulu saana
bushe aba bafyashi tabalemona ati

umwana kuti aponenamo fyaleta
ubwafya?

This river is so huge and deep, are
they not afraid of the child in front to

slip off and fall?

Awe nifyofine, cikulu icimana ici
icakweba ati ngaponenamo kuti
bafilwa napakutampila ukumufwaya.
It is so big indeed, such that if the
child fell in they would struggle so
much.

Caliba icikankala saana abafyashi
ukulolekesha pabana,pantu

ngatabalelolekesha pa bana ngabali
kuncende ngeshi kuti caleta ubwafya

ubukalamba saana.
It is quite important for parents to

ensure their children’s safety,
especially when outing to suchlike
places because it would be a fatal

encounter here.

Ee nifyo elo cipalile kwati umwana
nasansamuka pakumutwala ku menshi,
alemonekafye uwansansa
That is so true, and the very child is
very excited to be brought to this
place.

Imbwa shibili shileingila paka panga
shilebutuka.
Two dogs are headed to a thicket. boi imbwa ishi shilemoneka

ishikali,nashifumya nendimi panse
kwati shamona akakulya akanona.

Dear these are dogs that seem to be
fierce, just their race is hunty, as if

after some fatty food.

Shifwile shileyangalafye. Imbwa
shalitemwa ukubutauka, kuti wasanga
limbi pali abashipepeke.
These dogs must be just playing, as
dogs naturally love running around.

boi ishi nimbwa shakweba ati
ngawashimonafye ufwile watampako

nolubilo, utunwa natukulisha.
No way my friend, these are dogs you

run away from the moment you see
them. Their mouths are too big.

ubwafya walifulisha umwenso, imbwa
shalitemwa ukwangala
nabantu,ngawabutuka ninshi
wailetelelafye.
The problem is that you are full of
cynophobia, dogs are friendly to
humans and enjoy man’s company.

Umulumendo aleyangala na Honda
mumulu, muchibansa muli na ibumba
lyabantu abaletamba uyu mulumendo.
A gentleman is on his motorbike
spinning with a crowd of people
around watching.

Abantu bonse mwibumba baletota,
cilemoneka kwati nabasekalamo sana

pafyo uyu muntu alepilibausha icela
cakwe.

Everyone is excited and happy to see
how he is drifting his machine.Boi amangalo ya ifi yalaleta abantu

abengi chapamo, balomfwa bwino
ukutamba umuntu alecita ifintu ifyo
abengi teti bacite.
My dear this event is such a big thing,
many people come by to watch and
enjoy how that one can do what
exceptionally.

Nomba nangu bengomfwa bwino,
umunabo ngaicena akacula eka

nabalupwa bakwe.
However the crowd when you are hurt

you are on your own with relatives
only.Boi umuntu pakucita ifi ninshi pali

cimo, ubu ubwangalo bukulu
saana,limbi balapela indalama ishingi
saana kuli uyo uwacimfya.
Dear for one to participate in
anything there must be a reason, this
sport is well sponsored and the winner
is awarded unreservedly.

Figure 2: Examples of the BIG-C dataset. The grounding image (top) and the ensuing Bemba dialog transcribed
and translated in English.
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A Language Map of Zambia

Figure 3: Language Map of Zambia. Created by Translators without Borders. Retrieved from https:
//translatorswithoutborders.org/languages-of-zambia-interactive-en on January 2022.
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A Participant Training Exercise

The following instructional steps depict the participants exercise/tutorial during a training exercise session
before actual recording. The instructions were given to a pair of participant. The objective was to
create a text conversations for 5 sample images in a specified image folder using Google Sheets. The
recording session followed the same process, except with additional instructions involving the use of the
LIG-Aikuma (Gauthier et al., 2016) app.

• STEP 1: Open the first image in your image folders. If you are P16, for example, Go to
P1_Session_01 > Image7501 > Speaker_01 [If you are Speaker 1] or Speaker_02 [If you
are Speaker 2]. Open any of the images in the folder.

• STEP 2: While you are able to view the image, open the spreadsheet. Now that you have both image
and spreadsheet opened.

• STEP 3: Speaker 1 should enter the image number (in this case, 7501) in cell A3.

• STEP 4: Speaker 1 should describe what is in the image by a single sentence in cell B3. The
description should be a single sentence giving a clear mental picture of what is in the image.

• STEP 5 : Speaker 2 should be able to respond to Speaker 1 by entering their response in C3. The
response can be a question, a statement or an addition to what Speaker 1 said. As long as it’s a
sentence in Bemba. Remember this is a conversation and it should be able to naturally flow.

• STEP 6: Speaker 1 should complete cell D3 with a sentence in response to what Speaker 2 texted
in cell C3.

• STEP 7: Speaker 2 should put a response in cell E3 in response to what Speaker 1 texted in cell
D3.

• STEP 8: Speaker 1 closes the conversation with a sentence, however it may be in cell F3.

• STEP 9: If you have successfully generated the conversation/dialogue in the spreadsheet for the first
image, then go ahead and do so for the next 4 images.
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